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Abstract-- Autonomous systems are widely used today in industry.
The human-machine relationship in these systems is primarily that
of a human supervisory role.  This paper explores the concept of
human-robot teams where each member of the team has the ability
to assume initiative within a task.  Key to this effort is not only the
ability of the human to understand and predict robot performance,
but the robot’s ability to identify human needs and select
intervention points to assume different levels of initiative.  The
objective is to incorporate mobile autonomous robots into human
teams to augment both the human’s cognitive and physical abilities
in the performance of potentially hazardous tasks.

Index Terms—Automation, Cognitive science, Human factors,
Intelligent robots, Mobile robot dynamics, Robots.

I.  INTRODUCTION

This paper discusses the concept of human-robot teaming
in joint task accomplishment, specifically with regards to the
ability of both the human and robot to take initiative in task
performance.  The role of a robot in such a situation is to
augment human cognition and physical activity.  The objective
of such teaming is to increase the level of task performance by
leveraging off the unique capabilities of each performer.  Such
performance improvements may affect time to complete work,
the ability to conduct the task, and efficiency.  The robots for
this teaming are not remotely controlled manipulators, but
posses a level of autonomy, i.e., they are able to act without
direct human interaction at some level.

The use of a robot in this particular scenario can be likened
to that of a police dog and the human partner.  The dog
provides the human augmented capabilities such as sniffing to
find drugs or tracking a fugitive through the woods.
Additionally, the dog augments the human’s physical
capabilities by searching human-inaccessible areas and the
ability to confront a  would be threat at a standoff distance
from its human partner.

Within the Idaho National Engineering and Environmental
Laboratory (INEEL), as well as other Department of Energy
(DOE) complexes, exist extremely hazardous environments.
These environments may contain high radiation areas,
radioactive contamination, hazardous material contamination,
or a combination of all the above.  Worse yet, the levels of
such contamination and the associated human hazards may not
be fully known prior to entering the area.

Human-robot teams offer a means to accomplish tasks
within such areas efficiently while minimizing the hazard to
the human element. In this example, the robot can augment
human cognition in sampling and analyzing changing
environmental conditions to assess human risk and stay time.
Additionally, the robot can carry equipment, remotely position
sensors, and conduct physical labor as a means of augmenting
physical activity.

The use of autonomous systems is not a new area of
research.  To a large degree, however, such human-machine
systems have not explored the teaming concept, but have
utilized a human supervisory control schema.  Specifically,
supervisory control of a process implies that a human operator
communicates with the machine to gain information and issue
commands while the machine implements these commands
through artificial sensors and actuators to control the task or
process [1]. Within this control schema, the machine may
exhibit different levels of autonomy in the task.

Sheridan and Verplank [2], [3] introduced a scale to
describe levels of Human-Machine Interaction for the
accomplishment of the process within the supervisory control
system.   These levels of interaction are:

1. Whole task done by human except for actual
operation by machine;

2. Human asks computer to suggest options and
selects from the options;

3. Computer suggests options to human;
4. Computer suggests options and proposes one

of them;
5. Computer chooses an action and performs it if

human approves;
6. Computer chooses an action and performs it

unless human disapproves;
7. Computer chooses an action, performs it, and

informs human;
8. Computer does everything autonomously.

It is important to note that the levels of autonomy and thus
the levels of interaction relate to the machine’s cognizance of
the process and the environment surrounding the process.
This does not address the aspect of the machine’s recognition
of the human’s performance within the process.  This is a
subtle, yet very important distinction.

In the case of human-robot teaming, the paradigm must
shift.  Not only must the robot focus on the task, but
additionally, the robot must identify the needs and
shortcoming of the human element.
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II.  TEAMING

The Sheridan and Verplank levels of Human-Machine
Interaction still serve as a basic model for the incorporation of
autonomous and semi-autonomous systems into mixed teams.
However, this taxonomy of interaction relegates the machine
to the role of a subordinate and assumes that the machine
cannot override human commands or take initiative to assign
tasks to the human.

We submit that rather than conceive of machines as mere
tools, wholly subordinate to humans commands, it is more
effective to consider the machine as part of a dynamic human-
machine team in which each member is invested with agency
– the ability to actively and authoritatively take initiative to
accomplish task objectives. Within this schema, each member
has equal responsibility for performance of the task, but
responsibility and authority for particular task elements shifts
to the most appropriate member, be it human or machine.

There are several possible roles for each member of a
mixed human-machine team: Tool (applied to a single task
with direct control by a supervisor); Subordinate (member is
given a high level task with less direct interaction by a
supervisor); Equal (no direct supervision; each team member
is wholly responsible for some aspect of the task); or Leader
(directs the other members to perform a high level task).  Note
that these levels of interaction imply that the machine aspect
of the system could direct the human components of the
system to perform aspects of the task; that is, it is reasonable
that the machine may lead at least some aspect of the task
where its supervision would be more effective than the
reverse.

Categories for characterizing human and robot initiative
can provide a skeleton around which to design robotic control
architectures. In addition, they provide a basis for user
understanding and trust. The greatest challenge to the adoption
of autonomous robots is that of trust.

However, while it is profitable to categorize levels of
initiative, it is important to understand that robots for targeted
applications will most likely have modes of control that do not
fit cleanly into one category. Optimal task performance may
require that the robot assume a “leader” position over one
aspect of the task and yet in all other respects place the robot
in a subservient position.

The robot is often in a much better position than the human
to react to the local environment, and consequently, the robot
may take the leadership role regarding navigation. As leader,
the robot can then “veto” dangerous human commands to
avoid positive and negative obstacles.  Robot intelligent
perception however is still very immature and when faced
with half-open doors or empty boxes, the superior knowledge
of the human requires a role change and leadership returns to
the human for such judgment decisions.   These changing roles
implicate the importance of considering human factors in the
design of human-robot teams and mutual initiative.

Given the desire to employ robots in hazardous, critical
environments, the ability to shift a robot in and out of the
leadership role presents a conundrum. The user comes to rely
on the self-protective capabilities of the robot and yet, at
times, must override them to accomplish a critical mission.

For instance, when faced with an unknown box obstructing
the path, the user may shift the robot out of the leadership
responsibility for navigation, but grant the robot the “right” to
refuse human commands when the physical resistance to
motion is beyond a certain threshold. For other tasks, the user
may need to drive the robot to where it is touching an
obstacle. The user can curtail the robot’s collision avoidance
initiative and yet customize a “last resort” channel of initiative
based on bump sensors and short-range infrared break beams.

Ideally, we need control systems that allow the user to
configure particular “channels of initiative” that crosscut
broad categories.  The roles of each team member are
bounded by a complex and changing web of capabilities and
limitations to which each member must adapt and respond.
The ability of the human to develop accurate understanding of
robot behavior is essential if this adaptive role switching is to
work effectively. One of the most fascinating areas of future
work is the need for the robot to be imbued with an ability to
understand and predict human behavior.  This is the focus of
on-going work at the INEEL, which is discussed in a later
section.

III.  TEAM NEED’S AND EXPECTATIONS

The fundamental aspect of a human team that distinguishes
it from a simple group is the presence of a shared goal.
Furthermore, effective teams typically anticipate the
information needs of teammates via a shared mental model of
the task and current situation [4]. In many teams, members do
not fulfill a single, static role. In fact, many members end up
playing roles distinct from the task skills that gained them
admission into the group. Within a healthy team, group roles
evolve dynamically to meet new and unforeseen challenges.

When we apply team role theory to human-robot
interaction, we find that very few true human – robot teams
exist. Machines are generally used as tools, rarely as peers and
scarcely ever as task leaders. Just as roles evolve between
human team members, mixed human – robot teams should be
able to modulate the level of robotic initiative in order to
balance changes in the environment, task, and capabilities of
other team members.

The ability to transition roles and responsibility among the
members of mixed human-robot team presents new
challenges.  After all, the dynamics of performance for robots
are drastically different than for humans (i.e., communication,
perception, degradation, etc.)  Performance of a robot may far
exceed human abilities in certain elements of a task; however,
robots are notoriously unable to degrade gracefully in the face
of component failure or unforeseen changes in the
environment or task. Thus, while robots are often more
reliable than humans within certain parameters, they
ultimately lack the reliability necessary for tasks where such
parameters cannot be fully guaranteed. The answer to this
challenge is not to keep robots as passive tools. Rather, we
must have a team dynamic where roles can shift to
compensate for the unique kinds of failures and limitations
possessed by each member.

This need for dynamic role switching makes critical the
consideration of human factors in the design of the human-
machine interface, especially those issues regarding how each



member should communicate his, her, or its role in the team.
This includes the need for each team member to be able to
determine and be aware of the current capabilities of other
team members.  Among human teams, members are often able
to identify when another member is becoming overwhelmed
or over worked and task performance is degraded. It is more
difficult for a human to realize when a machine is overworked
and more difficult still for a machine to recognize when a
human is overwhelmed or overworked.

A.  Theory of Robot Behavior
The need for human and robot to predict and understand

one another’s actions presents a daunting challenge.  Indeed,
the challenge of supporting the situation awareness of the user
has occupied the field of robotics for decades.  For each level
of robot initiative, the user must develop a unique set of
expectations regarding how the robot behaves, that is, an
understanding or theory of the system’s behavior, here after
referred to as a theory of robot behavior (TORB). By TORB
we mean that the human operator is able to quickly and
accurately predict:

1. Actions the robot will take in response to
stimuli from the environment and other team
members;

2. The outcome of the cumulative set of actions.

The human may acquire this theory of behavior through
simulated or real world training with the robot. Most likely,
this theory of behavior will be unstable at first, but become
more entrenched with time. Further work with human
participants is necessary to better understand the TORB
development process and its effect on the task performance
and user perception. Recalling the example of a police
working dog, the policeman and his canine companion must
go through extensive training to build a level of expectation
and trust on both sides.  Police dog training begins when the
dog is between 12 and 18 months old.  This training initially
takes more than four months, but critically, reinforcement
training is continuous throughout the dog’s life [5].  This
training is not for just the dogs benefit, but serves to educate
the dog handlers to recognize and interpret the dog's
movements which increases the handler’s success rate in
conducting task.  It must also be noted that no two dogs will
act exactly the same.

However, in our research we are not concerned with
developing a formal model of robot cognition, but rather
require that the human understand and predict the emergent
actions of the robot, with or without an accurate notion of how
intelligent processing gives rise to the resulting behavior.
When faced with a robot that can orchestrate task elements,
the critical issue will not be how the robot or machine
“reasons,” but rather whether the human team members can
accurately predict robotic responses and understand how
cumulative actions and responses converge to fulfill task
objectives.

Many applications require the human to quickly develop an
adequate TORB. One way to make this possible is to leverage
the knowledge humans already possess about human behavior
and other animate objects, such as pets or even video games,

within our daily sphere of influence. For example, projects
with humanoids and robot dogs have explored the ways in
which modeling emotion in various ways can help (or hinder)
the ability of a human to effectively formulate a TORB [6].

Regardless of how it is formed, an effective TORB allows
humans to recognize and complement the initiative taken by
robots as they operate under different levels of autonomy. It is
this ability to predict and exploit the robot’s initiative that will
build operator proficiency and trust. The development of a
theory of robot behavior will also allow the user to switch
between and configure the robot’s levels of initiative to suit
the needs and components of the task at hand. Informal
experimentation with our own adjustable autonomy control
system indicates that no one role is, in and of itself, optimal
for the robot or human. Rather, the human – robot team is best
enabled to accomplish a complex task when given the
opportunity to shift back and forth between modes of control.
Using the real world robot system, the INEEL is in the
planning stages of performing human subject experiments to
assess how overall performance is affected by allowing the
user to shift roles for the robot on the fly.

B.  Theory of Human Behavior
In the 1940’s and 1950’s, Isaac Asimov through a series

of short stories developed the three Laws of Robotics that
governed robotic behavior throughout his books [7].  In 1985,
Asimov added an additional law, the Zeroth Law [8]. The
laws are:

0. A robot may not injure humanity, or, through
inaction, allow humanity to come to harm;

1. A robot may not injure a human being, or,
through inaction, allow a human being to come
to harm, unless this would violate the Zeroth
Law of Robotics;

2. A robot must obey orders given it by human
beings, except where such orders would
conflict with the Zeroth or First Law;

3. A robot must protect its own existence as long
as such protection does not conflict with the
Zeroth, First, or Second Law.

These laws formed the basis for the theory of behavior,
and governed human-robot interaction in his stories.  At the
heart of these laws is the robot’s ability to recognize the
human element and identify weakness or needs within
humans.   In promoting human-robot teams, the ability of the
robot to possess at least a basic ability to recognize and
evaluate human needs is essential.

Just as the human develops a theory of the robot’s
behavior, the robot must be able to understand and predict the
human members of the team. This is not to say that machines
must possess complex mental models or be able to discern our
intentions. Rather, it is necessary to raise the level of
interaction between the human and robot based upon readily
available, non-intrusive workload cues emanating from the
operator. The robot’s theory of human behavior may be a rule
set at a very simple level, or it may be a learned expectation
developed through practiced evolutions with its human
counterpart. The robot must possess some means to infer the



need for intervention.  Currently, accurate and non-intrusive
collection of these signals is difficult at best, and those
measures that have been used are unreliable at worst [9].

The answer to this dilemma is to reduce the human signals
down to a prescribed set of channels, which are available as an
integral part of the interaction of the human with the machine,
and which the machine can use to configure its behavior and
level of initiative.

Scientists in academia, industry, and government are
currently researching methods that promote machine cognition
of human needs.  Key measures to assess human need and
performance that researchers seek to identify include
workload, attention, arousal, stress, fatigue, memory, and
degraded performance.  Current methods being evaluated in
this area are listed in Table I.  [10]

TABLE I
POTENTIAL HUMAN PERFORMANCE MEASURES

Neural
Measures

Behavioral
Measures

Physiological
Measure

EEG
ECOG
FMRI
SPECT
PET
ERP
MEG
EROS
EMG
EOG

Eye tracking
Reaction time
Error rates
Motion
Mouse pressure
Key pressure
Blink rate
Control
interactions
Head position
Interface activity
Vehicle data
Subjective reports

Pupil dilation
GSR
Heart rate
Pulse
Respiration
Temperature
Blood pressure
Impedance
Saliva
Hormone levels
Movement
Expired CO2
Oxygenation

While these measurements all present challenges, the
utilization of human-robot teams confound the problem even
more.  While many of these measures may be assessed on
someone sitting within a cockpit or behind a computer panel,
they may not be measurable (at least at this stage in
technology) for interaction with a mobile autonomous robot.

 In the perceived human-robot teams, the robot is a situated
and embodied entity that exists in the world potentially along
side of the human element.   Rodney Brooks, the Director of
the MIT Artificial Intelligence Laboratory, provides the
following explanation of these terms:

A situated creature or robot is one that is embedded
in the world, and which does not deal with abstract
descriptions, but through its sensors with the here
and now of the world, which directly influences the
behavior of the creature.

An embodied creature or robot is one that has a
physical body and experiences the world, at least in
part, directly through the influence of the world on
that body.  A more specialized type of embodiment
occurs when the full extent of the creature is
contained within that body. [11]

During the performance of a task, the human and robot
may be side by side in the same proximal area or they may be
in physically distal locations.   Additionally, their proximity
may change during the course of the task.  Interaction between
the robot and human may be through direct communications
(verbal, gesture, touch, radio communications link) or indirect
observation (physically struggling, erratic behavior,
unexpected procedural deviation).  Interaction may also be
triggered by the observation of environmental / external
factors (rising radiation levels, the approach of additional
humans, etc.).

Once a prescriptive set of signals are identified, still further
challenges remain such as how the machine should indicate its
ability to do the task when the signals indicate that the human
has attention elsewhere.  It is critical that the machine disrupts
the human only when absolutely necessary.  In human only
teams, one member can simply ask the other member if they
require assistance.  However, in mixed teams, it is critical to
have cues to human performance that do not require special
human attention. On the other hand, there will necessarily be
situations where the robot must inform the human before
taking action.

The robot’s expectations must allow it to recognize human
limitations and anticipate human needs without second-
guessing the human’s every move. When robots do intervene
with their human counterparts, the human’s TORB must be
able to explain why the robot has stepped in and what this
shift in control means for the task at hand.

To understand the need for a robot to possess a theory of
human behavior, consider the case of a remote sensor
deployment.  In a remote setting, it is difficult though not
impossible for the robot to recognize when the human needs
assistance. By analyzing the commands sent by the human,
the robot can infer human need. For example, if the operator
frequently activates the robot’s brake while the robot is
traveling at high speeds, the robot may infer that the human is
having difficulty driving the robot. Of course, this could be
caused by several different factors including a lack of operator
skill, a lack of operator confidence, high workload, or a very
cluttered and/or dynamic environment. To disambiguate the
possibilities, an effective theory of human behavior must draw
from multiple cues. For instance, it is possible to monitor the
frequency of commands issued by the operator. Another
method we have implemented is to monitor the number of
times that the robot is given a “dangerous” command.
Dangerous commands can be recognized in terms of obstacle
avoidance behaviors, tilt-sensors, bump sensors, inertial
sensors, and resistance to motion measurements.

In addition to those outlined above, cues to operator
workload could include: frequent pauses before initiating
action; increases in errors or the time to perform a task;
frequent re-orientation of the robot to alter the user’s
perspective on the display; repetitive behaviors; or simply
informing the robot explicitly that the operator does not have
the resources to devote to the task. Khoury and Kondraske
[12] have also developed a reliable, non-intrusive means to
assess human workload based on the interaction with the
controller (e.g., joystick), which we hope to evaluate in the
near future.



Additional performance measures / indicators (detailed in
Table I) hold future promise, but may require the human
operator to be augmented with instrumentation to provide the
robot with the needed information.  This is not inconceivable
for near future implementation and is a needed area for
research.

C.  Robot Initiative
Once accurate measures of human performance are

available to the robot, a new question arises: How should the
robot initiate a new level of authority within the team?  There
are several ways the robot could do this.
1. The robot requests control of the task from the operator.

This type of interaction could become frustrating if the
robot is not able to assess accurately the ability of the
human to perform the task and the relation of the
performance measure to obtaining the goal.  If the robot
constantly pesters the operator about his or her
performance, the operator would soon disable that ability.

2. The robot could simply state that it is taking control of the
task, but allow the human operator veto power to this
initiative. The system could become unusable or
unwieldy, however, if the human has to frequently reverse
actions taken by the robot or prevent the robot from
taking an action.

3. The robot informs the operator it is taking control of the
task, but denies veto power, if time is critical or the action
to be taken has a small impact on performance.

4. The robot takes control of the task, and does not inform
the human operator.  In this case the operator may be
incapacitated or delirious in which informing the human
element serves no purpose or may have a detrimental
effect.

5. The robot aborts of the task and returns to a base state.  In
this case, the robot possessing environmental sensors and
an expectation of the human element may deem that the
task is unachievable and termination is necessary to
protect human life.

The benefits of allowing the team members to change roles
within the team significantly increases team flexibility and
reliability in task performance.  However, if the interface and
human-robot system are not designed in accordance with
critical principles of human factors in mind, dynamic role
changing may result in mode confusion, loss of operator
situation awareness, loss of operator confidence in assuming
supervisory control, and degraded and potentially catastrophic
performance. Appropriate feedback is required when roles and
levels of initiative change.  Failure to inform the operator
when the robot has overridden commands will lead to distrust
of the system, unless the behavior is beneath the level of
operator concern.  This phenomenon has been seen in the
airline industry with pilots and the automatic pilot mode of
operation. [13].  One of the most significant elements in
learning and developing system expectations is feedback.  

The importance of feedback cannot be understated as the
human and robots work within a mutual initiative system.
Given that the human and robot may be in either proximal or
distal environments, feedback may be provided via a computer
based interface for interfacing with the robot or a visual or

audible signal from the robot itself. Feedback from the robot
should not only include the mode change, but also an
indication of the reason for the change.  For optimal
performance of the team, the human must be able to develop
expectations regarding when and why the robot will be
motivated to initiate a new level of authority.

In fact, the level of initiative is of crucial importance. In
order for the human’s theory of system behavior to
comprehend and exploit robot initiative, the robot’s autonomy
should be structured hierarchically such that at any given time,
the user will know the bounds on what initiative the robot can
take. Consequently, the INEEL has developed a control
system with four clearly distinct levels of autonomy discussed
in the following section.

IV.  A CASE STUDY IN HUMAN-ROBOT INTERACTION

Robotic solutions are increasingly desired for conducting
remote tasks in hazardous environments. For instance, remote
characterization of high radiation environments is a pressing
application area where robotic solutions can provide
tremendous benefit. However, the DOE roadmap for Robotics
and Intelligent Machines states that much more work is
necessary in the area of human-robot interaction. In terms of
time, cost, and safety, ‘usability’ is the most crucial
component of robotic systems for remote characterization and
handling of radioactive and hazardous materials.

In  2001, the INEEL utilized a robotic system coupled with
a Gamma Locating Device (GLD) to characterize an area that
had been closed to human entry for many years. This state of
the art remote robotic system offered a means to remove the
human from hazardous environments. However, the robot
required high-fidelity video, reliable, continuous
communication, and instrumentation of the environment a
priori. As a mechanical ‘subordinate,’ this robot was
dependent on continuous, low-level input from a human and
was unable to cope with communication dropouts or continue
the task when excesses in operator workload disrupted the
input from the operator.

In response, research efforts at the INEEL have
developed a robotic system that can adjust its level of
autonomy on the fly, leveraging its own, intrinsic intelligence
to meet whatever level of control is available and appropriate.
The resulting robotics system, pictured in Fig. 1., including

Fig. 1.  INEEL operational robotic platform, an augmented ATRVJR.



hardware, software, and interface components, can slide
between roles of ‘subordinate,’ ‘equal’ and ‘leader.’ For this
system to meet its goals, we must be able to guarantee that the
robot will protect itself and the environment. To do so we fuse
a variety of range sensor information including inertial
sensors, compass, wheel encoders, laser range finders,
computer vision, thermal camera, infrared break beams, tilt
sensors, bump sensors, sonar, and others.  Also, a great deal of
work has been focused on providing situation awareness to the
user that can appropriately support the current level of
interaction.

Our research to date has developed a control architecture
that supports the following modes of remote intervention:
1. Teleoperation
2. Safe Mode
3. Shared Control
4. Full Autonomy

For each of these levels of autonomy, perceptual data is
fused into a specialized interface that provides the user with
abstracted auditory, graphical and textual representations of
the environment and task that are appropriate for the current
mode.

A.  Teleoperation
We have taken the interaction substrate used in previous
INEEL teleoperated robotic systems and revamped it through
feedback with people who have deployed such systems.
Within teleoperation mode, the user has full, continuous
control of the robot at a low level. The robot takes no initiative
except to stop once it recognizes that communications have
failed.

B.  Safe Mode
User directs movements of robot, but the robot takes

initiative to protect itself. In doing so, this mode allows the
user to issue motion commands with impunity, greatly
accelerating the speed and confidence with which the user can
accomplish remote tasks. The robot assesses its own status and
surrounding environment to decide whether commands are
safe. For example, the robot has excellent proprioception and
will stop its motion just before a collision, placing minimal
limits on the user to take the robot’s immediate surroundings
into account. The robot also continuously assesses the validity
of its diverse sensor readings and communication capabilities.
The robot will refuse to undertake a task if it does not have the
ability (i.e., sufficient power or perceptual resources) to safely
accomplish it.

C.  Shared Control
The robot takes the initiative to choose its own path,

responds autonomously to the environment, and works to
accomplish local objectives. However, this initiative is
primarily reactive rather than deliberative. In terms of
navigation, the robot responds only to its local (~ 6-10 meter
radius), sensed environment. Although the robot handles the
low level navigation and obstacle avoidance, the user supplies
intermittent input, often at the robot’s request, to guide the
robot in general directions. The problem of deciding how and

when the robot should ask for help has been a major line of
HRI enquiry and will be a major issue in our upcoming human
subject experiments.

D.  Full Autonomy
The robot performs global path planning to select its own

routes, requiring no user input except high-level tasking such
as "follow that target" or "search this area” (specified by
drawing a circle around a given area on the map created by the
robot). This map is built on the fly and uses frontier-based
exploration and localization to perform searches over large
areas including multiple rooms and corridors. The user
interacts with the map to specify tasks and can guide the robot
and infuse knowledge at an abstract level by selecting areas of
interest and identifying sensed environmental features, which
then become included within the map.

The latest development, and perhaps the most innovative
aspect of our project to date, is that we have imparted a
"theory of human behavior" within the robot's intrinsic
intelligence, which allows the robot to assess human
performance. Before we implemented this theory of human
behavior, the robot was already able to use its knowledge of
the environment and its own proprioception to take initiative
and refuse to accept dangerous commands. However, the level
of robot initiative was always controlled by the human. The
“theory of human behavior” allows the robot to switch modes
when the robot recognizes that the human is performing very
poorly. This theory of human behavior is based primarily on
the frequency of human input and the number and kind of
dangerous commands issued by the user. For instance, if the
human has repeatedly placed the robot or the environment in
danger, or if the human has been unsuccessful in extricating a
robot from a cluttered area, the robot will step in and take over
from the operator. Although the human can ultimately
override this capability, it provides a means for true peer-peer
interaction.

V. CONCLUSIONS

This paper has presented some of the unique challenges
associated with developing human-robot teams.  Specifically
it has explored the concept of mutual-initiative between
human and robot team partners.  Within this framework it is
argued that it is essential that both the human and robot
develop theories or expectations of how team members will
react within a changing task environment.  Paramount to this
is the ability for the robot to recognize human needs and
identify intervention points to take initiative.  

The INEEL is currently exploring new ground in the area
of human interaction with robots. Just as policemen develop
intuitive relationships with their canine partner, so should be
the relationships between human and robot team partners.   
The motivation for our work is the development of flexible
human-robot teams to support the performance of tasks within
human-hazardous environments.

Utilizing a robot equipped with robust sensors and
intelligence, we are developing a human-robot control system
and associated computer interfaces that promote mutual
initiative between the human operator and the robot.
Frequently operating in distal environments, the robot is often



able to make better judgments about its environment (i.e.,
local navigation) than humans. Consequently, we have created
modes of control where the robot monitors human command
input and infers the need to supplement or override human
action. The robot has the power to refuse to undertake
commands from the user that are deemed by the robot to pose
a threat to itself or its environment. This engenders a host of
new questions, especially in regard to how an autonomous and
mobile robot can infer intervention points. Our current system
utilizes human command sequences as a measure of human
performance. Within our implementation, human error loses
much of its sting because the robot is able to countermand
dangerous commands. At the same time, we have provided
means for the human to override robot initiative and to
configure the robotic initiative for specific tasks and
environments.  In this way, the human and robot become true
team partners who can support and compensate for one
another to adapt to new challenges.

Although this paper explores a new paradigm for human –
robot teaming, it must be acknowledged that our current
mutual-initiative robotic system presents only first steps
towards the possibility of robots assuming peer or even
leadership roles. Future research will focus on the
development and evaluation of new approaches to provide
greater precision in determining the human state and
performance level.
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